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Abstract

Graph energy is one of the most studied areas in graph theory, this article presents the
idea of product eccentricity energy (EP E) and the study on properties of the characteris-
tic polynomial obtained from the product eccentricity matrix. In addition, EP E of some
standard graphs are also obtained.
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1 Introduction

Graph theory is the department of discrete arithmetic, it is the thinking about the structures
with their properties, objectives and their relations. It was initially helpful in solving a variety
of mathematical issues, but when it was used in complex science, computer science, chemistry,
and other fields, it occasionally expanded into new areas of mathematical analysis.

The graphs considered in this article are simple, loop less and connected graphs. The ec-
centricity of a vertex is an important idea within this framework, as it evaluates the maximum
distance between 2 vertices. The distance between two vertices a and b in V (G) is the shortest
a − b path length in G. The eccentricity of the vertex evaluates the maximum distance from a
specific vertex to any other vertex in the graph. Formally, it can be expressed as:

ζ(b) = max{d(b, a) : ∀a ∈ V (G)}
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The eccentricity matrix ζ(G) of a graph G is obtained from the distance matrix of G by
retaining the largest distances in each row and each column and leaving zeros in the remaining
ones. The eccentricity energy of G is the sum of the absolute values of the eigenvalues of ζ(G).

Let G be a graph with n vertices and m edges. Denote the absolute eigen values of G as
λi, i = 1, 2, · · · n arranged in order that is not increasing as |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. In 1978
Ivan Gutman [3] computed the energy of a graph G as E(G) = ∑

( i = 1)n|λi|. Li.X, Y. Shi
and I. Gutman [4] introduced the energy of graph in 2012 in which the adjacency matrix of a
graph G is defined as

aij =

1 if vivj ∈ E

0 otherwise

Spectrum of the graph is denoted by

Spec(G) =
(

λ1 λ2 · · · λn

m1 m2 · · · mn

)

Where mi’s denote the multiplicities of the corresponding eigen value. The total of the absolute
values of the adjacency matrix’s eigenvalues equals the graph’s energy. Later, in 2009, C.
Adiga et al. [1] defined the graph’s maximum degree energy, which is dependent on the related
graph’s maximum degree matrix. The maximum degree matrix is defined as

dij =

max{d(vi), d(vj)} ifvivj ∈ E

0 otherwise

In 2016, Ahmed M. Naji et.al [2] defined the concept of maximum eccentricity matrix. Later,
Mohammad Issa Sowaity and B.Sharada [5] in 2017 introduced the concept of sum-eccentricity
energy of a graph in 2017. Inspired by this product eccentricity energy of graphs is defined and
their properties are studied.

2 Product Eccentricity Energy of a Graph
Definition 2.1. The product eccentricity matrix of the graph G is denoted as Pe(G) and is
defined as

pij =

e(vi).e(vj) ifvivj ∈ E

0 otherwise

The characteristic polynomial of the product eccentricity matrix is defined by
|ηI − Pe(G)| and the corresponding characteristic equation is ηI − Pe(G) = 0. Here I is
the identity matrix of order n. Eigen values of the product eccentricity matrix are the roots
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of the characteristic polynomial. Pe(G) is a real symmetric matrix with its trace zero. Since
G is a simple loopless graph all aii = 0 and its eigen values with real sum equals zero since
(tr(Pe(G) = 0).

EP E(G) is defined as the sum of the absolute eigen values,

EP E(G) =
n∑

i=1
|ηi|

where η1, η2, · · · ηn are the eigen values of the given product eccentricity matrix.

Example 2.2. Consider the graph G1 with 6 vertices and 7 edges

1

23

4 56

Product Eccentricity Matrix of G1 is computed below

Pe(G1) =



0 9 0 0 6 0
9 0 6 0 6 0
0 6 0 4 0 0
0 0 4 0 4 6
6 6 0 4 0 0
0 0 0 6 0 0


The Characteristic polynomial of G1 is η6 − 257 η4 − 648 η3 + 11268 η2 + 233328 η − 46656
The eigen values are
η1 = −11.64095, η2 = −8.547925, η3 = −3.479582, η4 = 1.28808,

η5 = 6.650705, η6 = 15.72967.

The Product-Eccentricity energy of G1 = | − 11.64095| + |−8.547925| + |−3.479582| +
|1.28808| + |6.650705| + |15.72867| = 47.34

3 Product Eccentricity Energy of Various Graphs and its Properties
Theorem 3.1. Let G be a graph of order n and let c0η

n + c1η
n−1 + c2η

n−2 + · · · + cn be its
corresponding characteristic polynomial then,

• c0 = 1

• c1 = 0
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• c2 = −∑n
i=1,i<j(e(vi).e(vj))2

• cn = (−1)n|Pe(G)|

Proof: 1,2. By the definition of characteristic polynomial , trivially, c0 the coefficient of
ηn = 1 and c1 = 0 (Since tr(Pe(G) = 0).

3. The third coefficient is obtained as

c2 =
n∑

1≤i,j≤n

∣∣∣∣∣∣ 0 pij

pij 0

∣∣∣∣∣∣
=

n∑
1≤i,j≤n

0 − (pij)2

= −
n∑

1≤i,j≤n

(pij)2

Here, pij =
e(vi).e(vj) ifvivj ∈ E

0 otherwise

Thus, we have c2 = −
n∑

i=1,i<j

(e(vi).e(vj))2

4. For any k,

ck = (−1)k
n∑

k=1
(k × k principle minors)

Therefore, cn = (−1)n|Pe(G)|

Example 3.2. From the previous example co-efficient of η4, c2 = −257. By theorem 3.1 we
prove

c2 = −
n∑

i=1,i<j

(e(vi).e(vj))2 = −[92 + 62 + 62 + 62 + 42 + 42 + 62] c2 = 256

Remark 3.3. Consider a complete graph Kn, then c2 = n(n − 1)
2 .

Corollary 3.4. For the complete graph Kn, we have

n∑
i=1

(ηi)2 = n(n − 1)
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Theorem 3.5. If η1, η2, · · · · · · ηn are the product eccentricity eigen values of a graph G, then
n∑

i=1
(ηi)2 = −2c2

Proof: We know that the trace is the sum of the eigen values. Thus, we have

n∑
i=1

(ηi) = trace (Pe(G))

On squaring,
n∑

i=1
(ηi)2 = (trace(Pe(G)))2

=
n∑

i=1

n∑
k=1

pikpki

= 2
n∑

i=1

n∑
i<k

(pik)2

= 2
n∑

i=1,i<k

(e(vi).e(vj))2

n∑
i=1

(ηi)2 = −2c2

Theorem 3.6. For the complete graph Kn, the product eccentricity eigen values are −1 and
n − 1 with multiplicities (n − 1) and 1 respectively and the product eccentricity energy is
2(n − 1).

Proof: The characteristic polynomial for any complete graph is obtained as c0η
n + c1η

n−1 +
c2η

n−2 + · · · + cn. Calculating the product eccentricity matrix of the complete graph we have

Pe(Kn) =



0 1 1 1 · · · · · · 1
1 0 1 1 · · · · · · 1
1 1 0 1 · · · · · · 1
...

...
...

... · · · · · · ...
...

...
...

... · · · · · · ...
...

...
...

... · · · · · · ...
1 1 1 1 · · · · · · 0


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Pe(Kn) =



η −1 −1 −1 · · · · · · −1
−1 η −1 −1 · · · · · · −1
−1 −1 η −1 · · · · · · −1

...
...

...
... · · · · · · ...

...
...

...
... · · · · · · ...

...
...

...
... · · · · · · ...

−1 −1 −1 −1 · · · · · · η


= (η + 1)n−1(η − (n − 1))

The corresponding characteristic equation is (η + 1)n−1(η − (n − 1)) = 0

Spec(Pe(Kn) =
(

−1 n − 1
n − 1 1

)
With observation of the matrix we draw the conclusion that the eigen values are −1 and n−1

with multiplicities (n − 1) and 1 respectively.
The Product Eccentricity Energy of Kn = (n − 1)| − 1| + 1|n − 1| = 2(n − 1).

The following observations are made from the characteristic polynomial of the complete graph:

1. c0 = (−1)n

2. c1 = 0

3. c2 = n(n−1)
2

4. cn = n − 1

Example 3.7. Consider the complete graph K4 the product eccentricity matrix is given below

Pe(K4) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


The characteristic polynomial of the corresponding matrix is η4 − 6η2 − 8η − 3

Spec(Pe(K4) =
(

−1 3
3(times) 1(time)

)
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The following observations are made from the above matrix,

1. c0 = 1

2. c1 = 0

3. c2 = n(n−1)
2

4. c4 = n − 1 = 3

The eigen values of K4 is −1, −1, −1, 3. The Product eccentricity energy is 6.

Theorem 3.8. For a Cocktail Party graph Kn,2, the product eccentricity energy is 16n.

Proof: The Product Eccentricity Matrix of the Cocktail Party Graph is obtained by the

pij(Kn,2) =

4 ifvivj ∈ E

0 otherwise

Since every vertex in the cocktail party graph has the eccentricity 2, its product eccentricity
takes the value 4 if the vertices are adjacent else, it takes the value 0.

The spectrum obtained from the product eccentricity matrix of the cocktail party graph is

Spec(Pe(Kn,2) =
(

8n −8n 0
1 1 n + 2

)
Thus, from the spectrum we compute the eigen values 8n, −8n.

Product Eccentricity energy is |8n| + | − 8n| = 16n.

Theorem 3.9. Let G be a complete bipartite graph G = Kr,s. Then the coefficient c2 takes the
value −42rs, where r and s are integers with r, s ≥ 2.

Proof: Using,

c2 = −
n∑

i=1,i<j

(e(vi).e(vj))2

Where vivj ∈ E , for every vertex in Kr,s we have e(vi) = 2, i = 1, 2, · · · r + s.

Hence we have,Pe(Kr,s) =

e(vi).e(vj) ifvivj ∈ E

0 otherwise

Theorem 3.10. If G = Kr,s and η1, η2, · · · , ηn are its corresponding eigen values then

Spec(Pe(Kr,s) =
(

0 4
√

rs −4
√

rs
n − 2 1 1

)
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Proof: The characteristic polynomial of Kr,s is ηn − 42rsηn−2 , the corresponding spectrum
of the graph is given below

Spec(Pe(Kr,s) =
(

0 4
√

rs −4
√

rs
n − 2 1 1

)
The Product Eccentricity Energy of the Bipartite Graph is 8

√
rs.

4 Bounds of Product Eccentricity Energy
Theorem 4.1. Let G be any graph with n- vertices then we have

√
2H ≤ EP E(G) ≤

√
2Hn

Proof: Using Cauchy- Schwarz Inequality,
( n∑

i=1
aibi

)2
≤
( n∑

i=1
a2

i

)( n∑
i=1

b2
i

)
Take ai = 1 and bi = |ηi| in Cauchy-Schwarz inequality, we obtain( n∑

i=1
|ηi|

)2
≤ n

( n∑
i=1

η2
i

)
(EP E(G))2 ≤ n(−2c2)

(EP E(G))2 ≤ n(−2(−H))

(EP E(G))2 ≤ 2nH

EP E(G) ≤
√

2nH

This is an upper bound, We have (EP E(G))2 = (
n∑

i=1
|ηi|2) ≤

n∑
i=1

|ηi|2 = 2H .

Thus, we obtain EP E(G) ≥
√

2H which is the lower bound. Hence, the inequality holds.
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