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Abstract

In QSAR/QSPR study, physico-chemical properties and topological indices such as
Randić, atom-bond connectivity (ABC) and geometric-arithmetic (GA) index are used to
predict the bioactivity of chemical compounds. A topological index can be considered as
a transformation of a chemical structure into a real number, these topological descriptors
significantly correlate certain physico-chemical properties of the corresponding chemical
compounds. Graph theory has found a considerable use in this area of research. In this
paper, we derive analytical closed results for the general Randić indexRα(G) (for different
values of α), first Zagreb, ABC and GA indices for the Dyck-56 chemical networks for
the first time.
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1 Introduction

In theoretical chemistry, the graph theoretic models can be used to study the properties of
molecules. Topological indices plays a vital role in QSAR/QSPR study. The application of
molecular structure descriptors is nowadays a standard procedure in the study of structure-
property relations, especially in QSAR/QSPR researches [1, 5, 7, 8, 9, 12, 13, 14, 16, 17, 18,
20, 21, 22, 23, 33, 35, 4, 24, 25]. In the last few years, the number of proposed molecular de-
scriptors is rapidly growing, they correlate the certain physico-chemical properties of chemical
compounds. A close correlation of Randić index to the boiling point and Kovats constants has
been found. A good model for the stability of linear and branched alkanes as well as the strain
energy of cycloalkanes is provided by the atom-bond connectivity (ABC) index. For certain
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physico-chemical properties like boiling point, Entropy, Enthalpy of vaporization, standard En-
thalpy of vaporization, Enthalpy of formation and acentric factor, the predictive power of GA
index is better than the predictive power of the Randić connectivity index [6]. The topological
properties of certain networks were studied recently by M Imran et al.[26, 27, 28, 29, 30, 31].
In this paper we compute these indices for Dyck-56 network (Figs.1, 2, 3) [32, 2].

Let G be a connected graph with n vertices and m edges. Let V (G) and E(G) be its vertex
and edge sets, respectively. A network is simply a connected graph having no multiple edges
and loops. A chemical graph is a graph whose vertices denotes atoms and edges denotes bonds
between the atoms and any underlying chemical structure. The degree of a vertex u in a graph
G is the number of edges joining to u and is denoted by du. In a chemical graph the degree
of any vertex is at most 4 [15]. The distance between the vertex u and v is the length of the
shortest path joining u and v and is denoted by dG(u, v) [11].

One of the oldest degree based topological index is Randić index [34] and is defined as,

R− 1
2

=
∑

uv∈E(G)

1√
(du × dv)

.

The general Randić index [3] Rα(G) is defined as,

Rα(G) =
∑

uv∈E(G)
(du × dv)α.

The first Zagreb indices of a graph G is defined as [19],

M1(G) =
∑

uv∈E(G)
[du + dv].

A well-known degree based topological index is atom-bond connectivity ABC index intro-
duced by Estrada et al. in [10] and defined as,

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

Another well-known topological index is geometric-arithmetic (GA) index [36] and is de-
fined as,

GA(G) =
∑

uv∈E(G)
2
√
dudv

du + dv
.
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2 Results for Dyck-56 networks
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Fig.1 : Dyck − 562×2(A) network

Table 1: Edge partition of Dyck-56 (A) network
(du, dv), where
uv ∈ E(G)

Number of edges

(2, 2) 4n
(2, 3) 8n
(3, 3) 18n2 − 10n

Theorem 2.1. Let G be the Dyck − 56n×n(A) network, then its general Randic index is equal
to

Rα(G) =



162n2 − 26n if α = 1;

54n2 + 8n
√

6− 22n if α = 1
2 ;

1
9 [18n2 + 11n] if α = −1;

n
[

2
√

6+8√
6 + 18n−10

3

]
if α = −1

2 ;

Proof: The number of vertices and edges in G are 12n2 + 4n and 18n2 − 2n respectively.
There are three types of edges in G, based on degrees of end vertices of each edge. Table 1,
shows the edge partitions of G.
By using edge partition given in table 1, we get

Rα(G) =
∑

uv∈E(G)
(du × dv)α

For α = 1,
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R1(G) =
∑

uv∈E(G)
(du × dv)

= 4n(2× 2) + 8n(2× 3) + (18n2 − 10n)(3× 3)

= 162n2 − 26n.

For α = 1
2 ,

R 1
2
(G) =

∑
uv∈E(G)

√
(du × dv)

= 4n
√

(2× 2) + 8n
√

(2× 3) + (18n2 − 10n)
√

(3× 3)

= 54n2 + 8n
√

6− 22n.

For α = −1,

R−1(G) =
∑

uv∈E(G)

1
(du × dv)

= 4n 1
(2× 2) + 8n 1

(2× 3) + (18n2 − 10n) 1
(3× 3)

= 1
9[18n2 + 11n].

For α = −1
2 ,

R− 1
2
(G) =

∑
uv∈E(G)

1√
(du × dv)

= 4n 1√
(2× 2)

+ 8n 1√
(2× 3)

+ (18n2 − 10n) 1√
(3× 3)

= n

[
2
√

6 + 8√
6

+ 18n− 10
3

]
.
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Theorem 2.2. Let G be the Dyck − 56n×n(A) network, then its first Zagreb index is equal to

M1(G) = 108n2 − 4n.

Proof: By using edge partition from table 1, the result follows.

M1(G) =
∑

uv∈E(G)
(du + dv)

= 4n(2 + 2) + 8n(2 + 3) + (18n2 − 10n)(3 + 3)

= 108n2 − 4n.

Theorem 2.3. Let G be the Dyck − 56n×n(A) network, then its ABC index is equal to

ABC(G) = 12n2 + n

3 (18
√

2− 20).

Proof: By using edge partition from table 1, the result follows.

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

= 4n
√

2 + 2− 2
4 + 8n

√
2 + 3− 2

6 + (18n2 − 10n)
√

3 + 3− 2
9

= 12n2 + n

3 (18
√

2− 20).

Theorem 2.4. Let G be the Dyck − 56n×n(A) network, then its GA index is equal to

GA(G) = 18n2 − 6n+ 16
√

6n
5 .

Proof: By using edge partition from table 1, the result follows.

GA(G) =
∑

uv∈E(G)
2
√
dudv

du + dv
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= 4n
(

2
√

2× 2
2 + 2

)
+ 8n

(
2
√

2× 3
2 + 3

)
+ (18n2 − 10n)

(
2
√

3× 3
3 + 3

)

= 18n2 − 6n+ 16
√

6n
5 .
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Fig.2 : Dyck − 562×2(B) network

Table 2: Edge partition of Dyck-56 (B) network
(du, dv), where
uv ∈ E(G)

Number of edges

(2, 3) 8(n+ 1)
(3, 3) 12n2

(3, 4) 12n(n− 1)
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Theorem 2.5. Let G be the Dyck − 56n×n(B) network, then its general Randic index is equal
to

Rα(G) =



252n2 − 96n+ 48 if α = 1;

36n2 + 8
√

6(n+ 1) + 24
√

3n(n− 1) if α = 1
2 ;

7n2+n+4
3 if α = −1;

4n2 + 2
√

3n(n− 1) + 8(n+1)√
6 if α = −1

2 ;

Proof: The number of vertices and edges in G are 18n2 − 3n and 24n2 − 4n+ 8 respectively.
There are three types of edges in G, based on degrees of end vertices of each edge. Table 2
shows the edge partitions of G.
By using edge partition given in table 2, we get

Rα(G) =
∑

uv∈E(G)
(du × dv)α

For α = 1,

R1(G) =
∑

uv∈E(G)
(du × dv)

= 8(n+ 1)(2× 3) + 12n2(3× 3) + 12n(n− 1)(3× 4)

= 252n2 − 96n+ 48.

For α = 1
2 ,

R 1
2
(G) =

∑
uv∈E(G)

√
(du × dv)

= 8(n+ 1)
√

6 + 12n2√9 + 12n(n− 1)
√

12

= 36n2 + 8
√

6(n+ 1) + 24
√

3n(n− 1).

For α = −1,
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R−1(G) =
∑

uv∈E(G)

1
(du × dv)

= 8(n+ 1)
6 + 12n2

9 + 12n(n− 1)
12

= 7n2 + n+ 4
3 .

For α = −1
2 ,

R−1
2

(G) =
∑

uv∈E(G)

1√
(du × dv)

= 8(n+ 1)√
6

+ 12n2
√

9
+ 12n(n− 1)√

12

= 4n2 + 2
√

3n(n− 1) + 8(n+ 1)√
6

.

Theorem 2.6. Let G be the Dyck − 56n×n(B) network, then its first Zagreb index is equal to
M1(G) = 156n2 − 44n+ 40.

Proof: By using edge partition from table 2, the result follows.

M1(G) =
∑

uv∈E(G)
(du + dv)

= 8(n+ 1)(2 + 3) + 12n2(3 + 3) + 12n(n− 1)(3 + 4)

= 156n2 − 44n+ 40.

Theorem 2.7. Let G be the Dyck − 56n×n(B) network, then its ABC index is equal to
ABC(G) = 8n2 + 4

√
2(n+ 1) + 2

√
15n(n− 1).

Proof: By using edge partition from table 2, the result follows.
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ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

= 8(n+ 1)
√

2 + 3− 2
6 + 12n2

√
3 + 3− 2

9 + 12n(n− 1)
√

3 + 4− 2
12

= 8n2 + 4
√

2(n+ 1) + 2
√

15n(n− 1).

Theorem 2.8. Let G be the Dyck − 56n×n(B) network, then its GA index is equal to

GA(G) = 12n2 + 16
√

6
5 (n+ 1) + 48

√
3

7 (n(n− 1)).

Proof: By using edge partition from table 2, the result follows.

GA(G) =
∑

uv∈E(G)
2
√
dudv

du + dv

= 8(n+ 1)
(

2
√

6
5

)
+ 12n2

(
2
√

9
6

)
+ (12n(n− 1))

(
2
√

12
7

)

= 12n2 + 16
√

6
5 (n+ 1) + 48

√
3

7 (n(n− 1)).
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Fig.3 : Dyck − 562×2(C) network
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Table 3: Edge partition of Dyck-56 (C) network
(du, dv), where
uv ∈ E(G)

Number of edges

(2, 3) 16n2

(3, 3) 22n2 − 10n
(2, 2) 4n(n− 1)

Theorem 2.9. Let G be the Dyck − 56n×n(C) network, then its general Randic index is equal
to

Rα(G) =



310n2 − 106n if α = 1;

(16
√

6 + 74)n2 − 30n− 8 if α = 1
2 ;

55n2−19n
9 if α = −1;

16n2
√

6 + 22n2−10n
3 + 2n(n− 1) if α = −1

2 ;

Proof: The number of vertices and edges in G are 32n2 − 8n and 42n2 − 14n respectively.
There are three types of edges in G, based on degrees of end vertices of each edge. Table 3
shows the edge partitions of G. By using edge partition given in Table 3, we get

Rα(G) =
∑

uv∈E(G)
(du × dv)α

For α = 1,

R1(G) =
∑

uv∈E(G)
(du × dv)

= 16n2(6) + (22n2 − 10n)(9) + 4n(n− 1)(4)

= 310n2 − 106n.

For α = 1
2 ,

R 1
2
(G) =

∑
uv∈E(G)

√
(du × dv)

= 16n2√6 + (22n2 − 10n)
√

9 + 4n(n− 1)
√

4
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= (16
√

6 + 74)n2 − 30n− 8.

For α = −1,

R−1(G) =
∑

uv∈E(G)

1
(du × dv)

= 16n2

6 + 22n2 − 10n
9 + 4n2 − 4n

4

= 55n2 − 19n
9 .

For α = −1
2 ,

R− 1
2
(G) =

∑
uv∈E(G)

1√
(du × dv)

= 16n2
√

6
+ 22n2 − 10n√

9
+ 4n2 − 4n√

4

= 16n2
√

6
+ 22n2 − 10n

3 + 2n(n− 1).

Theorem 2.10. Let G be the Dyck − 56n×n(C) network, then its first Zagreb index is equal to

M1(G) = 228n2 − 76n.

Proof: By using edge partition from Table 3, the result follows.

M1(G) =
∑

uv∈E(G)
(du + dv)

= 16n2(2 + 3) + (22n2 − 10n)(3 + 3) + 4n(n− 1)(2 + 2)

= 228n2 − 76n.

Theorem 2.11. Let G be the Dyck − 56n×n(C) network, then its ABC index is equal to
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ABC(G) =
(

24
√

2 + 44
3

)
n2 + 2

√
2(n(n− 1))− 20

3 n.

Proof: By using edge partition from Table 3, the result follows.

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

= 16n2

√
2 + 3− 2

6 + (22n2 − 10n)
√

3 + 3− 2
9 + 4n(n− 1)

√
2 + 2− 2

4

=
(

24
√

2 + 44
3

)
n2 + 2

√
2(n(n− 1))− 20

3 n.

Theorem 2.12. Let G be the Dyck − 56n×n(C) network, then its GA index is equal to

GA(G) =
(

32
√

6 + 130
5

)
n2 − 14n.

Proof: By using edge partition from Table 3, the result follows.

GA(G) =
∑

uv∈E(G)
2
√
dudv

du + dv

= 16n2
(

2
√

6
5

)
+ (22n2 − 10n)

(
2
√

9
6

)
+ (4n(n− 1))

(
2
√

4
4

)

=
(

32
√

6 + 130
5

)
n2 − 14n.

3 Conclusion

In this paper, certain degree based topological indices, namely general Randić index, ABC,
GA and first Zagreb index for Dyck-56 network were studied for the first time and analytical
closed formulas for this network were determined, which will help experts working in network
science understand and explore the underlying topologies of these networks. To construct
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and study new architectures has always been an open problem in both network and art/design
sciences.
In future, we are interested to design some new architectures/networks and then study their
toplogical indices which will be helpful to understand their underlying topologies.
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