A Generalised Coprime Graph-Revisited

S.Sriram
Post Graduate and Research Department of Mathematics National College (Autonomous), Affiliated to Bharathidasan University
Tiruchirappalli,Tamilnadu, India - 620001.
sriram.priya02@yahoo.com
P.Veeramallan
GHSS, Yethapur, Salem, Tamilnadu, India - 636117. and
Post Graduate and Research Department of Mathematics
National College (Autonomous), Affiliated to Bharathidasan University
Tiruchirappalli,Tamilnadu, India - 620001.
veeramallan1986@gmail.com

> A.David Christopher
> Department of Mathematics, The American College, Tallakkulam, Madurai, Tamilnadu, India - 625002
> and
> Post Graduate and Research Department of Mathematics
> National College (Autonomous), Affiliated to Bharathidasan University
> Tiruchirappalli,Tamilnadu, India - 620 001.
> davidchristopher@americancollege.edu.in

Abstract

In this paper we consider the Generalised coprime graph which is denoted by $G(n, M)$, whose vertex set is $\{1,2, \ldots, n\}$ and an edge, say $a b$, of $G(n, M)$ is defined when $\operatorname{gcd}(a, b) \in$ $M \subseteq\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$. In this article we obtain new expressions for the degree sequence of $G(n,\{1\})$ and the clique number for $G(n,\{1\})$. Further, equivalent conditions for connectivity of $G(n, M)$, existence of isolated vertex in $G(n, M)$ and bipartiteness of $G(n, M)$ were obtained.

Key words: Coprime graph, Clique number, Degree
2010 Mathematics Subject Classification : Primary O5C99; Secondary 05C07

[^0]
1 Motivation

The coprime graph of integers is a simple undirected graph with the vertex set $V=\{1,2, \ldots, n\}$ and the edge set $E=\{a b: a, b \in V$ and $\operatorname{gcd}(a, b)=1\}$. Paul Erdös and Gabor N. Sarkozy [7] addressed an extremal graph theory problem over this graph. They have obtained the maximal size of induced subgraph that guarantees the existence of a cycle in it of a specific odd length. In another paper, Gabor N. Sarkozy [2] arrived at a lower bound on the size of induced subgraph that guarantees the existence of a special type of tripartite graph.

A generalisation of coprime graph was given by Mutharasu et al., see [6]. In this article we explore some new properties of this generalised graph.

Following is the definition of generalised coprime graph given by Mutharasu et al. [6].
Definition 1.1. Let n be a positive integer and let $M \subseteq\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$. A graph, denoted $G(n, M)$, is defined with vertex set $\{1,2, \ldots, n\}$ and an edge $a b$ of $G(n, M)$ is defined when $\operatorname{gcd}(a, b) \in M$. We call this graph as $g c d$-graph

The following graph illustrates this definition:

Figure 1: $G(6,\{1,2\})$
This article is organised as follows: in Section 2 we find new expression for the degree sequence of $G(n,\{1\})$ and bounds for the maximum and minimum degree of $G(n, M)$. In section 3, we obtain conditions over M that makes $G(n, M)$: (i) a connected graph, and (ii) a graph with isolated vertex. Consequently, the number of connected gcd-graphs were counted. As the further development of coprime graph study, we find the clique number of $G(n,\{1\})$ and the Dirichlet degree sum: $\sum_{v \mid n} \operatorname{deg}(v)$ of $G(n,\{1\})$. A necessary condition for $G(n, M)$ to be a bipartite graph is also obtained.

Throughout this paper we use the graph terminologies of Gary Chartrand and Ping Zhang [3].

2 Degree sequence of $G(n, M)$

The first part of this section is concerned with the study of degree sequence of the graph $G(n,\{1\})$ which is the actual coprime graph considered by Paul Erdös.

Notation 2.1. We denote the degree of vertex v of the graph $G(n,\{1\})$ by $\operatorname{deg}_{v}(n)$.
The following result obtained by Junyao Pan and Xiuyun Guo[4] puts $\operatorname{deg}_{v}(n)$ as an expression of inclusion-exclusion type.

Theorem 2.2. Let n be a positive integer and let $v \in\{2, \ldots, n\}$. Let $v=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ be the prime factorisation of v. Then $\operatorname{deg}_{v}(n)=n-\sum_{p_{i}}\left\lfloor\frac{n}{p_{i}}\right\rfloor+\sum_{p_{i}<p_{j}}\left\lfloor\frac{n}{p_{i} p_{j}}\right\rfloor-\ldots$

As a consequence of Theorem 2.2 we obtain that the Dirichlet sum $\sum_{v \mid n} \operatorname{deg}_{v}(n)$ is one less than the gcd-sum function.

Theorem 2.3. In $G(n,\{1\})$, we have $\sum_{v \mid n} \operatorname{deg}_{v}(n)=g(n)-1$, where $g(n)$ denotes the gcdsum function defined by $g(n)=\sum_{k=1}^{n} \operatorname{gcd}(n, k)$.
Proof: Let $v \geq 2$ be a divisor of n. Then from Theorem 2.2 we have

$$
\begin{aligned}
\operatorname{deg}_{v}(n) & =n-\sum_{p_{i}} \frac{n}{p_{i}}+\sum_{p_{i}<p_{j}} \frac{n}{p_{i} p_{j}}-\ldots \\
& =\frac{n}{v}\left(v-\sum_{p_{i}} \frac{v}{p_{i}}+\sum_{p_{i}<p_{j}} \frac{v}{p_{i} p_{j}}-\ldots\right) \\
& =\frac{n}{v} \phi(v),
\end{aligned}
$$

where $\phi(n)$ is the Euler's phi function that counts the number of positive integers that are less than n and relatively prime to n.

For $v=1$, we have

$$
\begin{aligned}
\operatorname{deg}_{v}(n) & =n-1 \\
& =\frac{n}{1} \phi(1)-1 .
\end{aligned}
$$

This gives the relation: $\sum_{v \mid n} \operatorname{deg}_{v}(n)=\sum_{v \mid n} \frac{n}{v} \phi(v)-1$.
Kevin A. Broughan [5] established that $g(n)=\sum_{k=1}^{n} \operatorname{gcd}(n, k)=\sum_{v \mid n} \frac{n}{v} \phi(v)$.
Now the result follows from the two equations above.
In the proof above, we have the expression: $\operatorname{deg}_{v}(n)=\frac{n}{v} \phi(v)$ when $v \geq 2$ is a divisor of n. A general formula of this fashion is obtained in the following result. To present that result we need the following definition.

Definition 2.4. Let n and m be two positive integer. We define $\phi(n, m)$ to be the number of positive integers that are less than or equal to m and relatively prime to m.

Theorem 2.5. Let n and v be two positive integers with $v \geq 2$. We have $\operatorname{deg}_{v}(n)=k \phi(v)+$ $\phi(v, r)$, where k (resp. r) is the quotient (resp. remainder) while dividing n by v.

Proof: Let $v \in\{1,2, \ldots, n\}$. Consider the equality $n=k v+r$. From the relation

$$
\operatorname{gcd}(v, i)=\operatorname{gcd}(v, v+i)
$$

it follows that the number of integers in $\{1,2, \ldots, n\}$ that are relatively prime to v equals $k \phi(v)+\phi(v, r)$. Since this counting is $\operatorname{deg}_{v}(n)$, the result follows.

In the following result, we have a recurrence type expression for $\operatorname{deg}_{v}(n)$.

Theorem 2.6. Let n and v be two positive integers with $1 \leq v \leq n$. Then we have

$$
\operatorname{deg}_{v}(n+1)= \begin{cases}\operatorname{deg}_{v}(n) & \text { if } \operatorname{gcd}(v, n+1) \neq 1 \\ \operatorname{deg}_{v}(n)+1 & \text { if } \operatorname{gcd}(v, n+1)=1\end{cases}
$$

Proof: Suppose that $\operatorname{gcd}(v, n+1)=1$. Then exactly an edge $(v, n+1)$ is incident with v in $G(n+1,\{1\})$ other than the edges incident with v in $G(n,\{1\})$. Therefore we have $\operatorname{deg}_{v}(n+1)=\operatorname{deg}_{v}(n)+1$.

Suppose that $\operatorname{gcd}(v, n+1) \neq 1$. Then evidently $n+1$ is not adjacent with v. Therefore the number of edges that are incident with v in $G(n,\{1\})$ remains the same in $G(n+1,\{1\})$. Hence $\operatorname{deg}_{v}(n+1)=\operatorname{deg}_{v}(n)$.

It is evident that $G\left(n,\left\{1,2, \cdots,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right)$ is a complete graph of order n. This fact is used to arrive at the following identity.

Theorem 2.7. We have $\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\phi(1)+\phi(2)+\ldots+\phi\left(\left\lfloor\frac{n}{k}\right\rfloor\right)-1\right)=\frac{n(n-1)}{2}$.
Proof: Consider the graph $G\left(n,\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right)$. Since $1 \leq \operatorname{gcd}(a, b) \leq\left\lfloor\frac{n}{2}\right\rfloor$ for every $a, b \in$ $\{1,2, \ldots, n\}$, it follows that $G\left(n,\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right)$ is a complete graph. Then it is evident that the number of edges in $G\left(n,\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right)$ is $\frac{n(n-1)}{2}$.

We count the number of edges in $G\left(n,\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right)$ in a different way. Consider the
following array of lattice points:

$$
\left[\begin{array}{cccccc}
(1,1) & (1,2) & (1,3) & \cdots & (1, n-1) & (1, n) \\
\cdot & (2,2) & (2,3) & \cdots & (2, n-1) & (2, n) \\
\cdot & \cdot & (3,3) & \cdots & (3, n-1) & (3, n) \\
\vdots & \vdots & \vdots & \ddots & (n-1, n-1) & (n-1, n) \\
\cdot & \cdot & \cdot & \cdot & \cdot & (n, n)
\end{array}\right] .
$$

we see that the number of lattice points (a, b) in the r th column that satisfies the condition $\operatorname{gcd}(a, b)=1$ is $\phi(r)$. Consequently, the number of lattice points (a, b) in the above array such that $\operatorname{gcd}(a, b)=1$ is $\phi(1)+\phi(2)+\cdots+\phi(n)$. In the same way, for $k>1$, the number of lattice points (a, b) in the $k r$ th column that satisfies the condition $\operatorname{gcd}(a, b)=k$ is $\phi(r)$. This gives the conclusion that the number of lattice points (a, b) satisfying the condition $\operatorname{gcd}(a, b)=k$ in the above array equals $\phi(1)+\phi(2)+\ldots+\phi\left(\left\lfloor\frac{n}{k}\right\rfloor\right)$. At this juncture, we observe that $\operatorname{gcd}(a, b)$ varies from 1 to $\left\lfloor\frac{n}{2}\right\rfloor$. Now we see that except the lattice points of the form (t, t), all the other lattice points of the above array may serve as the edges of a complete graph with n vertices. Therefore, the number of edges (a, b) in $G\left(n,\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right)$ satisfying $\operatorname{gcd}(a, b)=k$ equals $\phi(1)+\phi(2)+\ldots+\phi\left(\left\lfloor\frac{n}{k}\right\rfloor\right)-1$. Since k varies from 1 to $\left\lfloor\frac{n}{2}\right\rfloor$, the result follows.

Next result gives bounds and expression for the maximum and minimum degree of $G(n, M)$.
Theorem 2.8. Let $\Delta(G(n, M))$ (resp. $\delta(G(n, M)))$ denotes the maximum (resp. minimum) degree of the graph $G(n, M)$. Then we have
(a) $\quad \Delta(G(n, M)) \geq \min _{m \in M}\left\lfloor\frac{n}{m}\right\rfloor-1$ if $1 \notin M$
(b) $\Delta(G(n, M))=n-1$ if $1 \in M$
(c) $\quad \delta(G(n, M))=0$ if $1 \notin M$
(d) let $\delta(n)$ denote the minimum degree of $G(n,\{1\})$ and let $M_{n}=\left\{v: \operatorname{deg}_{v}(n)=\delta(n)\right\}$. We have

$$
\delta(n+1)= \begin{cases}\delta(n) & \text { if } \operatorname{gcd}(v, n+1) \neq 1 \text { for each } v \in M_{n} \text { and } \phi(n+1) \geq \delta(n)+1 \\ \delta(n)+1 & \text { if } \operatorname{gcd}(v, n+1)=1 \text { for some } v \in M_{n} \text { and } \phi(n+1) \geq \delta(n)+1 \\ \phi(n+1) & \text { if } \phi(n+1)<\delta(n)+1\end{cases}
$$

Proof: Assume $1 \notin M$. We see that for each $m \in M$, the induced subgraph by the vertices $m, 2 m, 3 m, \ldots$ is isomorphic to $G\left(\left\lfloor\frac{n}{m}\right\rfloor,\{1\}\right)$. Since $\Delta\left(G\left(\left\lfloor\frac{n}{m}\right\rfloor,\{1\}\right)=\left\lfloor\frac{n}{m}\right\rfloor-1\right.$ and the vertex
m assumes the maximum degree in the induced subgraph by the vertices $m, 2 m, 3 m, \ldots$, it follows that $\Delta(G(n, M)) \geq \min _{m \in M\left\lfloor\frac{n}{m}\right\rfloor}$. Now (a) follows.

Suppose that $1 \in M$. Then it follows that the vertex 1 is adjacent with all the other vertices, whence we have $\Delta(G(n, M))=n-1$. Now (b) follows.

Assume that $1 \notin M$. Then the vertex 1 will be isolated one. This gives $\delta(G(n, M))=0$. Now (c) follows.

Add the vertex $n+1$ with $G(n,\{1\})$ and join an edge with each vertex, say v, of $G(n,\{1\})$ if $\operatorname{gcd}(v, n+1)=1$. Note that the resulting graph is $G(n+1,\{1\})$. Also the introduction of $n+1$ implies that $\delta(n+1)=\delta(n)$ or $\delta(n+1)=\delta(n)+1$ provided $\operatorname{deg}(n+1) \geq \delta(n)+1$. More precisely, when $\operatorname{deg}(n+1) \geq \delta(n)+1$, one can see that $\delta(n+1)=\delta(n)$ if $\operatorname{gcd}(v, n+1) \neq 1$ for each $v \in M_{n}$, and $\delta(n+1)=\delta(n)+1$ if $\operatorname{gcd}(v, n+1)=1$ for some $v \in M_{n}$. On the otherhand, if $\operatorname{deg}(n+1)<\delta(n)+1$, then $\delta(n+1)=\operatorname{deg}(n+1)$. Since $\operatorname{deg}(n+1)=\phi(n+1)$, part (c) follows.

3 Complement, Connectedness and Clique number of $G(n, M)$

Recall from the Definition 1.1 that the graph $G(n, M)$ is called gcd-graph. Recently, Ethan Berkove and Michael Brilleslyper [1] studied the complement of a generalised coprime graph in various aspects. In the following result, we will show that complement of a gcd-graph is again a gcd-graph.

Theorem 3.1. We have $\overline{G(n, M)}=G(n, \mathbb{N} \backslash M)$.
Proof: Let $a b$ be an edge in $\overline{G(n, M)}$. Then we have $\operatorname{gcd}(a, b) \notin M$. That is, $\operatorname{gcd}(a, b) \in$ $\mathbb{N} \backslash M$. In other sense, the edge $a b$ lies in $G(n, \mathbb{N} \backslash M)$. Consequently, $\overline{G(n, M)} \subseteq G(n, \mathbb{N} \backslash M)$. Let $u v$ be an edge in $G(n, \mathbb{N} \backslash M)$. Then we have $\operatorname{gcd}(u, v) \notin M$. That is, $u v$ is not an edge of $G(n, M)$. Equivalently, $u v$ is an edge of $\overline{G(n, M)}$. Therefore $G(n, \mathbb{N} \backslash M) \subseteq \overline{G(n, M)}$. Consequently, $\overline{G(n, M)}=G(n, \mathbb{N} \backslash M)$.

Now we find equivalent condition for connectivity of $G(n, M)$.
Theorem 3.2. A gcd graph $G(n, M)$ is connected if, and only if, $1 \in M$.
Proof: Assume that $G(n, M)$ is connected. If $1 \notin M$, then the vertex 1 will be an isolated vertex, which is not the case. Therefore $1 \in M$. To prove the converse, assume that $1 \in M$. Then it is easy to see that the vertex 1 is adjacent with every other vertices of $G(n, M)$. Now the connectivity of $G(n, M)$ is assured.

The above characterisation for connectedness in $G(n, M)$ permits us to count the number of connected gcd graphs.

Theorem 3.3. We have
(a) The number of connected labelled gcd graphs with n vertices is $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$.
(b) The number of non connected labelled gcd graphs with n vertices is $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$.

Proof: In view of Theorem 3.2 one can map a connected labelled gcd graph on n vertices with a subset of $\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$ having 1 , and vice versa. Here we take a subset of $\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, because every integer greater than $\left\lfloor\frac{n}{2}\right\rfloor$ will never contribute to $\operatorname{gcd}(a, b)$ for $a, b \in\{1, \ldots, n\}$. Since the number of subsets of afore mentioned type is $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$, part (a) follows.

In similar way, in view of Theorem 3.2 one can map a non-connected labelled gcd graph on n vertices with a subset of $\left\{2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and vice versa. Since the number of subsets of this type is $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$, part (b) follows.

Now we have another consequence of Theorem 3.2.
Theorem 3.4. Every gcd graph is non self-complementary.
Proof: Assume that $G(n, M)$ is self-complementary.
Case i. Assume that $G(n, M)$ is connected. Then from Theorem 3.2 it follows that $1 \in M$. Since $\overline{G(n, M)}=G(n, \bar{M})$, from Theorem 3.2 it follows that $\overline{G(n, M)}$ is disconnected. This contradict our assumption.

Case ii. Assume that $G(n, M)$ is disconnected. Then from Theorem 3.2 it follows that $1 \notin M$. Since $\overline{G(n, M)}=G(n, \bar{M})$, from Theorem 3.2 it follows that $\overline{G(n, M)}$ is connected. This contradict our assumption.

Remark 3.5. There are many other simple consequences of Theorem 3.2. We list few of them.

1. For $n \geq 3, G(n, M)$ is not a tree.
2. For $n \geq 3, G(n, M)$ is not a cycle.
3. Since every k-regular graph of order n with $k \geq\left\lfloor\frac{n}{2}\right\rfloor$ is a Hamiltonian graph and complement of a k-regular graph is $n-1-k$ regular, in view of Theorem 3.2, $G(n, M)$ is always a non-regular graph.

Now we have a characterisation theorem for the existence of isolated vertex in $G(n, M)$.

Theorem 3.6. A vertex v in $G(n, M)$ is isolated if, and only if, none of the divisors of v is in M.

Proof: Assume that v is an isolated vertex of $G(n, M)$. Now in view of Theorem3.2, we have that $1 \notin M$. Again since v is isolated, we have that $\operatorname{gcd}(v, k) \notin M$ for every $k \in\{1, \ldots, n\}$. If a divisor of v, say d with $d>1$, is in M, then $\operatorname{gcd}(v, d)=d$. Consequently, there is an edge, say $v d$, in $G(n, M)$, but this is not the case.

Conversely, assume that none of the divisors of v is in M for some v. We show that v is an isolated vertex. If not, then we have $\operatorname{gcd}(v, k) \in M$ for some $k \in\{1, \ldots, n\}$. This show that a divisor of v is present in M, which is not the case.

Next result is a sufficient condition for the existence of a spanning complete graph of order m (denoted by K_{m}) in $G(n, M)$.

Theorem 3.7. If $\left\{a, 2 a \cdots,\left\lfloor\frac{m}{2}\right\rfloor a\right\} \subseteq M$ and $m a \leq n$, then $G(n, M)$ has K_{m} as an induced subgraph.

Proof: For each $k_{1}, k_{2} \in\{a, 2 a, \ldots, m a\}$ it is evident to see that $\operatorname{gcd}\left(k_{1}, k_{2}\right) \in\left\{a, 2 a, \ldots,\left\lfloor\frac{m}{2}\right\rfloor a\right\}$. Whence it follows that the vertices $\{a, 2 a, \ldots, m a\}$ forms a spanning subgraph K_{m}.

The converse of the theorem above cannot be asserted. Following graph serves as an example for this:

Figure 2: $G(6,\{1\})$
Here the vertices $\{1,3,4,5\}$ induces a K_{4}, but the set $\{1\}$ does not meet the hypothesis of the above theorem. In fact one can even assert a more strong statement than this, that is, for any given positive integer m one can find an n such that the graph $G(n,\{1\})$ has K_{m} as an induced subgraph.

Theorem 3.8. Let $n \geq 2$ be a positive integer. Then $G(n,\{1\})$ has $K_{\pi(n)+1}$ as an induced subgraph, where $\pi(n)$ denotes the number of primes less than or equal to n.

Proof: Consider the set $\{1\} \cup\{p \in \mathbb{N}: p$ is a prime and $p \leq n\}$. Then it is easy to see that the cardinality of this set is $\pi(n)+1$ and that every two elements of this set are relatively prime. From this it follows that the vertices $\{1\} \cup\{p \in \mathbb{N}: p$ is a prime and $p \leq n\}$ induces a complete graph of order $\pi(n)+1$. Now the result follows.

Next result asserts that the maximal order of an induced complete subgraph of $G(n,\{1\})$ is $\pi(n)+1$.

Theorem 3.9. The clique number of $G(n,\{1\})$ is $\pi(n)+1$.
Proof: Let $M(n)$ be the cardinality of maximal subset, say $M_{\max }$, of $\{1,2, \ldots, n\}$ such that $a, b \in M_{\max }$ imply that $\operatorname{gcd}(a, b)=1$. Now we claim that $M(n)=\pi(n)+1$. It is evident to see that every pair of distinct elements in the set $\{1\} \cup\{p \in \mathbb{N}: p$ is a prime and $p \leq n\}$ is relatively prime. Hence, we have $M(n) \geq \pi(n)+1$. Suppose that there is a set of integers, say K, with every distinct pair of elements of K being relatively prime and $|K|>\pi(n)+1$. If either 1 or one of the primes less than n is not present in K, then from the cardinality of K and the fundamental theorem of algebra it follows that there will be atleast one pair of distinct elements of K which is not relatively prime. Consequently, $\{1\} \cup\{p \in \mathbb{N}: p$ is a prime and $p \leq n\} \subseteq K$. If $K=$ $\{1\} \cup\{p \in \mathbb{N}: p$ is a prime and $p \leq n\}$ then we are done, or else again from the cardinality of K and the fundamental theorem of algebra it follows that there will be atleast one pair of distinct elements of K which is not relatively prime. Consequently, $M(n)=\pi(n)+1$.

The final result of this section is a necessary condition for $G(n, M)$ to be bipartite.
Theorem 3.10. If $G(n, M)$ is bipartite then $m>\frac{n}{3}$ for every $m \in M$.
Proof: We prove the contrapositive of the above statement. Suppose that $m \leq \frac{n}{3}$ for some $m \in M$. Now since $\operatorname{gcd}(m, 2 m)=m, \operatorname{gcd}(2 m, 3 m)=m$ and $\operatorname{gcd}(m, 3 m)=m$, we have the triangle $m-2 m-3 m-m$. Since every bipartite graph must necessarily be void of odd cycle, the result follows.

References

[1] Ethan Berkove, Michael Brilleslyper, Subgraphs of coprime graphs on sets of consecutive integers, 22 (2022), 1-18.
[2] Gabor N. Sarkozy, Complete tripartite subgraphs in the coprime graph of integers, Discrete Math., 202 (1999), 227-238.
[3] Gary Chartrand and Ping Zhang, A first course in Graph Theory, Dover publication (2012).
[4] Junyao Pan, Xiuyun Guo, The Full Automorphism Groups, Determining Sets and Resolving Sets of Coprime Graphs, Graphs and Combinatorics, 35 (2019) 485-501.
[5] Kevin A. Broughan, The Gcd-sum function, J. Integer Seq., 4 (2001) Article 01.2.2.
[6] S. Mutharasu, N. Mohamed Rilwan, M. K. Angel Jebitha, T. TamizhChelvam, On generalised coprime graph, Iran. J. Math. Sci. Inform., 9 (2014), 1-6.
[7] Paul Erdos, Gabor N. Sarkozy, On cycles in the coprime graph of integers, Electron. J. Combin., 4(1997), R8.

[^0]: * Corresponding Author: P.Veeramallan
 Ψ Received on July 23, 2022 / Revised on October 15, 2022 / Accepted on January 19, 2023

