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Abstract

In this paper we consider the Generalised coprime graph which is denoted by G(n, M),
whose vertex set is {1, 2, . . . , n} and an edge, say ab, of G(n, M) is defined when gcd(a, b) ∈
M ⊆ {1, 2, . . . , ⌊n

2 ⌋}. In this article we obtain new expressions for the degree sequence of
G(n, {1}) and the clique number for G(n, {1}). Further, equivalent conditions for connec-
tivity of G(n, M), existence of isolated vertex in G(n, M) and bipartiteness of G(n, M)
were obtained.
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1 Motivation
The coprime graph of integers is a simple undirected graph with the vertex set V = {1, 2, . . . , n}
and the edge set E = {ab : a, b ∈ V and gcd(a, b) = 1}. Paul Erdös and Gabor N. Sarkozy
[7] addressed an extremal graph theory problem over this graph. They have obtained the max-
imal size of induced subgraph that guarantees the existence of a cycle in it of a specific odd
length. In another paper, Gabor N. Sarkozy [2] arrived at a lower bound on the size of induced
subgraph that guarantees the existence of a special type of tripartite graph.

A generalisation of coprime graph was given by Mutharasu et al., see [6]. In this article we
explore some new properties of this generalised graph.

Following is the definition of generalised coprime graph given by Mutharasu et al. [6].

Definition 1.1. Let n be a positive integer and let M ⊆ {1, 2, . . . , ⌊n
2 ⌋}. A graph, denoted

G(n, M), is defined with vertex set {1, 2, . . . , n} and an edge ab of G(n, M) is defined when
gcd(a, b) ∈ M . We call this graph as gcd-graph.

The following graph illustrates this definition:

1

2

3

4

5

6

Figure 1: G(6, {1, 2})

This article is organised as follows: in Section 2 we find new expression for the degree
sequence of G(n, {1}) and bounds for the maximum and minimum degree of G(n, M). In
section 3, we obtain conditions over M that makes G(n, M): (i) a connected graph, and (ii) a
graph with isolated vertex. Consequently, the number of connected gcd-graphs were counted.
As the further development of coprime graph study, we find the clique number of G(n, {1})
and the Dirichlet degree sum:

∑
v|n deg(v) of G(n, {1}). A necessary condition for G(n, M)

to be a bipartite graph is also obtained.
Throughout this paper we use the graph terminologies of Gary Chartrand and Ping Zhang

[3].
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2 Degree sequence of G(n, M)
The first part of this section is concerned with the study of degree sequence of the graph
G(n, {1}) which is the actual coprime graph considered by Paul Erdös.

Notation 2.1. We denote the degree of vertex v of the graph G(n, {1}) by degv(n).

The following result obtained by Junyao Pan and Xiuyun Guo[4] puts degv(n) as an expres-
sion of inclusion-exclusion type.

Theorem 2.2. Let n be a positive integer and let v ∈ {2, . . . , n}. Let v = pα1
1 · · · pαk

k be the
prime factorisation of v. Then degv(n) = n − ∑

pi
⌊ n

pi
⌋ + ∑

pi<pj
⌊ n

pipj
⌋ − . . .

As a consequence of Theorem 2.2 we obtain that the Dirichlet sum
∑

v|n degv(n) is one less
than the gcd-sum function.

Theorem 2.3. In G(n, {1}), we have
∑

v|n degv(n) = g(n) − 1, where g(n) denotes the gcd-
sum function defined by g(n) = ∑n

k=1 gcd(n, k).

Proof: Let v ≥ 2 be a divisor of n. Then from Theorem 2.2 we have

degv(n) = n −
∑
pi

n

pi

+
∑

pi<pj

n

pipj

− . . .

= n

v

v −
∑
pi

v

pi

+
∑

pi<pj

v

pipj

− . . .


= n

v
ϕ(v),

where ϕ(n) is the Euler’s phi function that counts the number of positive integers that are less
than n and relatively prime to n.

For v = 1, we have

degv(n) = n − 1

= n

1 ϕ(1) − 1.

This gives the relation:
∑

v|n degv(n) = ∑
v|n

n
v
ϕ(v) − 1.

Kevin A. Broughan [5] established that g(n) = ∑n
k=1 gcd(n, k) = ∑

v|n
n
v
ϕ(v).

Now the result follows from the two equations above.

In the proof above, we have the expression: degv(n) = n
v
ϕ(v) when v ≥ 2 is a divisor of n.

A general formula of this fashion is obtained in the following result. To present that result we
need the following definition.
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Definition 2.4. Let n and m be two positive integer. We define ϕ(n, m) to be the number of
positive integers that are less than or equal to m and relatively prime to m.

Theorem 2.5. Let n and v be two positive integers with v ≥ 2. We have degv(n) = kϕ(v) +
ϕ(v, r), where k (resp. r) is the quotient (resp. remainder) while dividing n by v.

Proof: Let v ∈ {1, 2, . . . , n}. Consider the equality n = kv + r. From the relation

gcd(v, i) = gcd(v, v + i),

it follows that the number of integers in {1, 2, . . . , n} that are relatively prime to v equals
kϕ(v) + ϕ(v, r). Since this counting is degv(n), the result follows.

In the following result, we have a recurrence type expression for degv(n).

Theorem 2.6. Let n and v be two positive integers with 1 ≤ v ≤ n. Then we have

degv(n + 1) =

degv(n) if gcd(v, n + 1) ̸= 1;
degv(n) + 1 if gcd(v, n + 1) = 1.

Proof: Suppose that gcd(v, n + 1) = 1. Then exactly an edge (v, n + 1) is incident with
v in G(n + 1, {1}) other than the edges incident with v in G(n, {1}). Therefore we have
degv(n + 1) = degv(n) + 1.

Suppose that gcd(v, n + 1) ̸= 1. Then evidently n + 1 is not adjacent with v. Therefore
the number of edges that are incident with v in G(n, {1}) remains the same in G(n + 1, {1}).
Hence degv(n + 1) = degv(n).

It is evident that G(n, {1, 2, · · · , ⌊n
2 ⌋}) is a complete graph of order n. This fact is used to

arrive at the following identity.

Theorem 2.7. We have
∑⌊ n

2 ⌋
k=1

(
ϕ(1) + ϕ(2) + . . . + ϕ(⌊n

k
⌋) − 1

)
= n(n−1)

2 .

Proof: Consider the graph G(n, {1, 2, . . . , ⌊n
2 ⌋}). Since 1 ≤ gcd(a, b) ≤ ⌊n

2 ⌋ for every a, b ∈
{1, 2, . . . , n}, it follows that G(n, {1, 2, . . . , ⌊n

2 ⌋}) is a complete graph. Then it is evident that
the number of edges in G(n, {1, 2, . . . , ⌊n

2 ⌋}) is n(n−1)
2 .

We count the number of edges in G(n, {1, 2, . . . , ⌊n
2 ⌋}) in a different way. Consider the



A Generalised Coprime Graph-Revisited 5

following array of lattice points:

(1, 1) (1, 2) (1, 3) · · · (1, n − 1) (1, n)
· (2, 2) (2, 3) · · · (2, n − 1) (2, n)
· · (3, 3) · · · (3, n − 1) (3, n)
...

...
... . . . (n − 1, n − 1) (n − 1, n)

· · · · · (n, n)

 .

we see that the number of lattice points (a, b) in the r th column that satisfies the condition
gcd(a, b) = 1 is ϕ(r). Consequently, the number of lattice points (a, b) in the above array such
that gcd(a, b) = 1 is ϕ(1)+ϕ(2)+ · · ·+ϕ(n). In the same way, for k > 1, the number of lattice
points (a, b) in the kr th column that satisfies the condition gcd(a, b) = k is ϕ(r). This gives
the conclusion that the number of lattice points (a, b) satisfying the condition gcd(a, b) = k in
the above array equals ϕ(1) + ϕ(2) + . . . + ϕ(⌊n

k
⌋). At this juncture, we observe that gcd(a, b)

varies from 1 to ⌊n
2 ⌋. Now we see that except the lattice points of the form (t, t), all the other

lattice points of the above array may serve as the edges of a complete graph with n vertices.
Therefore, the number of edges (a, b) in G(n, {1, 2, . . . , ⌊n

2 ⌋}) satisfying gcd(a, b) = k equals
ϕ(1) + ϕ(2) + . . . + ϕ(⌊n

k
⌋) − 1. Since k varies from 1 to ⌊n

2 ⌋, the result follows.

Next result gives bounds and expression for the maximum and minimum degree of G(n, M).

Theorem 2.8. Let ∆(G(n, M)) (resp. δ(G(n, M))) denotes the maximum (resp. minimum)
degree of the graph G(n, M). Then we have

(a) ∆(G(n, M)) ≥ minm∈M⌊ n
m

⌋ − 1 if 1 /∈ M

(b) ∆(G(n, M)) = n − 1 if 1 ∈ M

(c) δ(G(n, M)) = 0 if 1 /∈ M

(d) let δ(n) denote the minimum degree of G(n, {1}) and let Mn = {v : degv(n) = δ(n)}.

We have

δ(n+1) =


δ(n) if gcd(v, n + 1) ̸= 1 for each v ∈ Mn and ϕ(n + 1) ≥ δ(n) + 1;
δ(n) + 1 if gcd(v, n + 1) = 1 for some v ∈ Mn and ϕ(n + 1) ≥ δ(n) + 1;
ϕ(n + 1) if ϕ(n + 1) < δ(n) + 1.

Proof: Assume 1 /∈ M . We see that for each m ∈ M , the induced subgraph by the vertices
m, 2m, 3m, . . . is isomorphic to G(⌊ n

m
⌋, {1}). Since ∆(G(⌊ n

m
⌋, {1}) = ⌊ n

m
⌋−1 and the vertex
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m assumes the maximum degree in the induced subgraph by the vertices m, 2m, 3m, . . ., it
follows that ∆(G(n, M))≥ minm∈M⌊ n

m
⌋ − 1. Now (a) follows.

Suppose that 1 ∈ M . Then it follows that the vertex 1 is adjacent with all the other vertices,
whence we have ∆(G(n, M)) = n − 1. Now (b) follows.

Assume that 1 /∈ M . Then the vertex 1 will be isolated one. This gives δ(G(n, M)) = 0.
Now (c) follows.

Add the vertex n + 1 with G(n, {1}) and join an edge with each vertex, say v, of G(n, {1})
if gcd(v, n + 1) = 1. Note that the resulting graph is G(n + 1, {1}). Also the introduction of
n+1 implies that δ(n+1) = δ(n) or δ(n+1) = δ(n)+1 provided deg(n+1) ≥ δ(n)+1. More
precisely, when deg(n + 1) ≥ δ(n) + 1, one can see that δ(n + 1) = δ(n) if gcd(v, n + 1) ̸= 1
for each v ∈ Mn, and δ(n + 1) = δ(n) + 1 if gcd(v, n + 1) = 1 for some v ∈ Mn. On the
otherhand, if deg(n+1) < δ(n)+1, then δ(n+1) = deg(n+1). Since deg(n+1) = ϕ(n+1),
part (c) follows.

3 Complement, Connectedness and Clique number of G(n, M)
Recall from the Definition 1.1 that the graph G(n, M) is called gcd-graph. Recently, Ethan
Berkove and Michael Brilleslyper [1] studied the complement of a generalised coprime graph
in various aspects. In the following result, we will show that complement of a gcd-graph is
again a gcd-graph.

Theorem 3.1. We have G(n, M) = G(n,N \ M).

Proof: Let ab be an edge in G(n, M). Then we have gcd(a, b) /∈ M . That is, gcd(a, b) ∈
N\M . In other sense, the edge ab lies in G(n,N\M). Consequently, G(n, M) ⊆ G(n,N\M).
Let uv be an edge in G(n,N \ M). Then we have gcd(u, v) /∈ M . That is, uv is not an edge
of G(n, M). Equivalently, uv is an edge of G(n, M). Therefore G(n,N \ M) ⊆ G(n, M).
Consequently, G(n, M) = G(n,N \ M).

Now we find equivalent condition for connectivity of G(n, M).

Theorem 3.2. A gcd graph G(n, M) is connected if, and only if, 1 ∈ M .

Proof: Assume that G(n, M) is connected. If 1 /∈ M , then the vertex 1 will be an isolated
vertex, which is not the case. Therefore 1 ∈ M . To prove the converse, assume that 1 ∈ M .
Then it is easy to see that the vertex 1 is adjacent with every other vertices of G(n, M). Now
the connectivity of G(n, M) is assured.
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The above characterisation for connectedness in G(n, M) permits us to count the number
of connected gcd graphs.

Theorem 3.3. We have

(a) The number of connected labelled gcd graphs with n vertices is 2⌊ n
2 ⌋−1.

(b) The number of non connected labelled gcd graphs with n vertices is 2⌊ n
2 ⌋−1.

Proof: In view of Theorem 3.2 one can map a connected labelled gcd graph on n vertices with
a subset of {1, 2, . . . , ⌊n

2 ⌋} having 1, and vice versa. Here we take a subset of {1, 2, . . . , ⌊n
2 ⌋},

because every integer greater than ⌊n
2 ⌋ will never contribute to gcd(a, b) for a, b ∈ {1, . . . , n}.

Since the number of subsets of afore mentioned type is 2⌊ n
2 ⌋−1, part (a) follows.

In similar way, in view of Theorem 3.2 one can map a non-connected labelled gcd graph on
n vertices with a subset of {2, . . . , ⌊n

2 ⌋} and vice versa. Since the number of subsets of this
type is 2⌊ n

2 ⌋−1, part (b) follows.

Now we have another consequence of Theorem 3.2 .

Theorem 3.4. Every gcd graph is non self-complementary.

Proof: Assume that G(n, M) is self-complementary.
Case i. Assume that G(n, M) is connected. Then from Theorem 3.2 it follows that 1 ∈ M .

Since G(n, M) = G(n, M), from Theorem 3.2 it follows that G(n, M) is disconnected. This
contradict our assumption.

Case ii. Assume that G(n, M) is disconnected. Then from Theorem 3.2 it follows that
1 /∈ M . Since G(n, M) = G(n, M), from Theorem 3.2 it follows that G(n, M) is connected.
This contradict our assumption.

Remark 3.5. There are many other simple consequences of Theorem 3.2. We list few of them.

1. For n ≥ 3, G(n, M) is not a tree.

2. For n ≥ 3, G(n, M) is not a cycle.

3. Since every k-regular graph of order n with k ≥ ⌊n
2 ⌋ is a Hamiltonian graph and com-

plement of a k-regular graph is n − 1 − k regular, in view of Theorem 3.2, G(n, M) is
always a non-regular graph.

Now we have a characterisation theorem for the existence of isolated vertex in G(n, M).



8 S. Sriram, P. Veeramallan and A. David Christopher

Theorem 3.6. A vertex v in G(n, M) is isolated if, and only if, none of the divisors of v is in
M .

Proof: Assume that v is an isolated vertex of G(n, M). Now in view of Theorem 3.2, we have
that 1 /∈ M . Again since v is isolated, we have that gcd(v, k) /∈ M for every k ∈ {1, . . . , n}.
If a divisor of v, say d with d > 1, is in M , then gcd(v, d) = d. Consequently, there is an edge,
say vd, in G(n, M), but this is not the case.

Conversely, assume that none of the divisors of v is in M for some v. We show that v is an
isolated vertex. If not, then we have gcd(v, k) ∈ M for some k ∈ {1, . . . , n}. This show that a
divisor of v is present in M , which is not the case.

Next result is a sufficient condition for the existence of a spanning complete graph of order
m (denoted by Km) in G(n, M).

Theorem 3.7. If {a, 2a · · · , ⌊m
2 ⌋a} ⊆ M and ma ≤ n, then G(n, M) has Km as an induced

subgraph.

Proof: For each k1, k2 ∈ {a, 2a, . . . , ma} it is evident to see that gcd(k1, k2) ∈ {a, 2a, . . . , ⌊m
2 ⌋a}.

Whence it follows that the vertices {a, 2a, . . . , ma} forms a spanning subgraph Km.

The converse of the theorem above cannot be asserted. Following graph serves as an exam-
ple for this:

1
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4

5

6

Figure 2: G(6, {1})

Here the vertices {1, 3, 4, 5} induces a K4, but the set {1} does not meet the hypothesis of
the above theorem. In fact one can even assert a more strong statement than this, that is, for
any given positive integer m one can find an n such that the graph G(n, {1}) has Km as an
induced subgraph.
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Theorem 3.8. Let n ≥ 2 be a positive integer. Then G(n, {1}) has Kπ(n)+1 as an induced
subgraph, where π(n) denotes the number of primes less than or equal to n.

Proof: Consider the set {1} ∪ {p ∈ N : p is a prime and p ≤ n}. Then it is easy to see that
the cardinality of this set is π(n) + 1 and that every two elements of this set are relatively
prime. From this it follows that the vertices {1} ∪ {p ∈ N : p is a prime and p ≤ n} induces a
complete graph of order π(n) + 1. Now the result follows.

Next result asserts that the maximal order of an induced complete subgraph of G(n, {1}) is
π(n) + 1.

Theorem 3.9. The clique number of G(n, {1}) is π(n) + 1.

Proof: Let M(n) be the cardinality of maximal subset, say Mmax, of {1, 2, . . . , n} such that
a, b ∈ Mmax imply that gcd(a, b) = 1. Now we claim that M(n) = π(n)+1. It is evident to see
that every pair of distinct elements in the set {1}∪{p ∈ N : p is a prime and p ≤ n} is relatively
prime. Hence, we have M(n) ≥ π(n) + 1. Suppose that there is a set of integers, say K, with
every distinct pair of elements of K being relatively prime and |K| > π(n)+1. If either 1 or one
of the primes less than n is not present in K, then from the cardinality of K and the fundamental
theorem of algebra it follows that there will be atleast one pair of distinct elements of K which
is not relatively prime. Consequently, {1} ∪ {p ∈ N : p is a prime and p ≤ n} ⊆ K. If K =
{1} ∪ {p ∈ N : p is a prime and p ≤ n} then we are done, or else again from the cardinality
of K and the fundamental theorem of algebra it follows that there will be atleast one pair of
distinct elements of K which is not relatively prime. Consequently, M(n) = π(n) + 1.

The final result of this section is a necessary condition for G(n, M) to be bipartite.

Theorem 3.10. If G(n, M) is bipartite then m > n
3 for every m ∈ M .

Proof: We prove the contrapositive of the above statement. Suppose that m ≤ n
3 for some

m ∈ M . Now since gcd(m, 2m) = m, gcd(2m, 3m) = m and gcd(m, 3m) = m, we have the
triangle m − 2m − 3m − m. Since every bipartite graph must necessarily be void of odd cycle,
the result follows.
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